Skip to main content
eScholarship
Open Access Publications from the University of California

About

SFEWS provides credible scientific information on California's complex water issues, linking new science to policy with great effect. SFEWS retains a regional focus on the San Francisco Bay and the Sacramento–San Joaquin Delta, also known as the Bay–Delta watershed. At the heart of open access from the California Digital Library, SFEWS's scholarly output ranks #1 for the UC Davis Institute  of the Environment and ranks #3 campus wide.

Volume 2, Issue 2, 2004

Research Article

Spatial and Temporal Variability of Suspended-Sediment Concentrations in a Shallow Estuarine Environment

Shallow subembayments respond differently than deep channels to physical forces acting in estuaries. The U.S. Geological Survey measured suspended-sediment concentrations at five locations in Honker Bay, a shallow subembayment of San Francisco Bay, and the adjacent channel to investigate the spatial and temporal differences between deep and shallow estuarine environments. During the first freshwater pulse of the wet season, the channel tended to transport suspended sediments through the system, whereas the shallow area acted as off-channel storage where deposition would likely occur. Following the freshwater pulse, suspended-sediment concentrations were greater in Honker Bay than in the adjacent deep channel, due to the larger supply of erodible sediment on the bed. However, the tidal variability of suspended-sediment concentrations in both Honker Bay and in the adjacent channel was greater after the freshwater pulse than before. During wind events, suspended-sediment concentrations in the channel were not affected; however, wind played a crucial role in the resuspension of sediments in the shallows. Despite wind-wave sediment resuspension in Honker Bay, tidally averaged suspended-sediment flux was controlled by the flood-dominated currents.

Trends in the Sediment Yield of the Sacramento River, California, 1957–2001

Human activities within a watershed, such as agriculture, urbanization, and dam building, may affect the sediment yield from the watershed. Because the equilibrium geomorphic form of an estuary is dependent in part on the sediment supply from the watershed, anthropogenic activities within the watershed have the potential to affect estuary geomorphology. The Sacramento River drains the northern half of California’s Central Valley and is the primary source of sediment to San Francisco Bay. In this paper, it is shown that the delivery of suspended-sediment from the Sacramento River to San Francisco Bay has decreased by about one-half during the period 1957 to 2001. Many factors may be contributing to the trend in sediment yield, including the depletion of erodible sediment from hydraulic mining in the late 1800s, trapping of sediment in reservoirs, riverbank protection, altered land-uses (such as agriculture, grazing, urbanization, and logging), and levees. This finding has implications for planned tidal wetland restoration activities around San Francisco Bay, where an adequate sediment supply will be needed to build subsided areas to elevations typical of tidal wetlands as well as to keep pace with projected sea-level rise. In a broader context, the study underscores the need to address anthropogenic impacts on watershed sediment yield when considering actions such as restoration within downstream depositional areas.

Biology and Population Dynamics of Sacramento Splittail (Pogonichthys macrolepidotus) in the San Francisco Estuary: A Review

The Sacramento splittail (Pogonichthys macrolepidotus) is a cyprinid fish endemic to the Central Valley of California with a range that centers on the San Francisco Estuary. It is a state Species of Special Concern and was only recently (2003) delisted as a threatened species by the U. S. Fish and Wildlife Service. Splittail live 7-9 years, tolerate a wide range of environmental conditions, and have high fecundity. Typically, adults migrate upstream in January and February and spawn on seasonally inundated floodplains in March and April. In May the juveniles migrate back downstream to shallow, brackish water rearing grounds, where they feed on detritus and invertebrates for 1-2 years before migrating back upstream to spawn. Seven long-term sampling programs in the estuary indicate that the splittail population is maintained by strong year classes resulting from successful spawning in wet years, although some spawning occurs in all years. Modeling shows them to be resilient, but managing floodplains to promote frequent successful spawning is needed to keep them abundant. Additionally, it is important to provide safe migration corridors between spawning and rearing grounds as well as abundant high-quality brackish water rearing habitat. Key research needs are (1) to examine how the timing, magnitude, and duration of high flows contribute to the generation of strong year classes, (2) to describe differences in young of year survival on the floodplain and in river margins from hatching to down-river migration, (3) explore the possible trophic effects of new invaders such as the overbite clam and Siberian prawn, and (4) determine the response of splittail populations to climate change and sea level rise.