Abstract: We present the DESI 2024 galaxy and quasar baryon acoustic oscillations (BAO) measurements using over 5.7 million unique galaxy and quasar redshifts in the range 0.1 < z < 2.1. Divided by tracer type, we utilize 300,017 galaxies from the magnitude-limited Bright Galaxy Survey with 0.1 < z < 0.4, 2,138,600 Luminous Red Galaxies with 0.4 < z < 1.1, 2,432,022 Emission Line Galaxies with 0.8 < z < 1.6, and 856,652 quasars with 0.8 < z < 2.1, over a ∼ 7,500 square degree footprint. The analysis was blinded at the catalog-level to avoid confirmation bias. All fiducial choices of the BAO fitting and reconstruction methodology, as well as the size of the systematic errors, were determined on the basis of the tests with mock catalogs and the blinded data catalogs. We present several improvements to the BAO analysis pipeline, including enhancing the BAO fitting and reconstruction methods in a more physically-motivated direction, and also present results using combinations of tracers. We employ a unified BAO analysis method across all tracers. We present a re-analysis of SDSS BOSS and eBOSS results applying the improved DESI methodology and find scatter consistent with the level of the quoted SDSS theoretical systematic uncertainties. With the total effective survey volume of ∼ 18 Gpc3, the combined precision of the BAO measurements across the six different redshift bins is ∼0.52%, marking a 1.2-fold improvement over the previous state-of-the-art results using only first-year data. We detect the BAO in all of these six redshift bins. The highest significance of BAO detection is 9.1σ at the effective redshift of 0.93, with a constraint of 0.86% placed on the BAO scale. We find that our observed BAO scales are systematically larger than the prediction of the Planck 2018-ΛCDM at z < 0.8. We translate the results into transverse comoving distance and radial Hubble distance measurements, which are used to constrain cosmological models in our companion paper.
Abstract: At millimeter wavelengths, the atmospheric emission is circularly polarized owing to the Zeeman splitting of molecular oxygen by the Earth's magnetic field. We report a measurement of the signal in the 150 GHz band using 3 yr of observational data with the Polarbear project. Nonidealities of a continuously rotating half-wave plate (HWP) partially convert circularly polarized light to linearly polarized light. While Polarbear detectors are sensitive to linear polarization, this effect makes them sensitive to circular polarization. Although this was not the intended use, we utilized this conversion to measure circular polarization. We reconstruct the azimuthal gradient of the circular polarization signal and measure its dependency from the scanning direction and the detector bandpass. We compare the signal with a simulation based on atmospheric emission theory, the detector bandpass, and the HWP leakage spectrum model. We find the ratio of the observed azimuthal slope to the simulated slope is 0.92 ± 0.01(stat) ± 0.07(sys). This ratio corresponds to a brightness temperature of 3.8 mK at the effective band center of 121.8 GHz and bandwidth of 3.5 GHz estimated from representative detector bandpass and the spectrum of Zeeman emission. This result validates our understanding of the instrument and reinforces the feasibility of measuring the circular polarization using the imperfection of continuously rotating HWP. Continuously rotating HWP is popular in ongoing and future cosmic microwave background experiments to modulate the polarized signal. This work shows a method for signal extraction and leakage subtraction that can help measure circular polarization in such experiments.
Excitation of long-lived states in bromine nuclei using a tabletop laser-plasma accelerator providing pulsed (<100 fs) electron beams provided a sensitive probe of γ strength and level densities in the nuclear quasicontinuum and may indicate angular momentum coupling through electron-nuclear interactions. Solid-density active LaBr_{3} targets absorb real and virtual photons up to 35±2.5 MeV and deexcite through γ cascade into different states. A factor of 4.354±0.932 enhancement of the ^{80}Br^{m}/^{80}Br^{g} isomeric ratio was observed following electron irradiation, as compared to bremsstrahlung. Additional angular momentum transfer could possibly occur through nuclear-plasma or electron-nuclear interactions enabled by the ultrashort electron beam. Further investigation of these mechanisms could have far-reaching impact including decreased storage of long-term nuclear waste and an improved understanding of heavy element formation in astrophysical settings.
Context. Gravitationally lensed type Ia supernovae (glSNe Ia) are unique astronomical tools that can be used to study cosmological parameters, distributions of dark matter, the astrophysics of the supernovae, and the intervening lensing galaxies themselves. A small number of highly magnified glSNe Ia have been discovered by ground-based telescopes such as the Zwicky Transient Facility (ZTF), but simulations predict that a fainter, undetected population may also exist. Aims. We present a systematic search for glSNe Ia in the ZTF archive of alerts distributed from June 1 2019 to September 1 2022. Methods. Using the AMPEL platform, we developed a pipeline that distinguishes candidate glSNe Ia from other variable sources. Initial cuts were applied to the ZTF alert photometry (with constraints on the peak absolute magnitude and the distance to a catalogue-matched galaxy, as examples) before forced photometry was obtained for the remaining candidates. Additional cuts were applied to refine the candidates based on their light curve colours, lens galaxy colours, and the resulting parameters from fits to the SALT2 SN Ia template. The candidates were also cross-matched with the DESI spectroscopic catalogue. Results. Seven transients were identified that passed all the cuts and had an associated galaxy DESI redshift, which we present as glSN Ia candidates. Although superluminous supernovae (SLSNe) cannot be fully rejected as contaminants, two events, ZTF19abpjicm and ZTF22aahmovu, are significantly different from typical SLSNe and their light curves can be modelled as two-image glSN Ia systems. From this two-image modelling, we estimate time delays of 22 ± 3 and 34 ± 1 days for the two events, respectively, which suggests that we have uncovered a population of glSNe Ia with longer time delays. Conclusions. The pipeline is efficient and sensitive enough to parse full alert streams. It is currently being applied to the live ZTF alert stream to identify and follow-up future candidates while active. This pipeline could be the foundation for glSNe Ia searches in future surveys, such as the Rubin Observatory Legacy Survey of Space and Time.
Abstract: We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-α forest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 < z < 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requires H 0=(68.52±0.62) km s-1 Mpc-1. In conjunction with CMB anisotropies from Planck and CMB lensing data from Planck and ACT, we find Ωm=0.307± 0.005 and H 0=(67.97±0.38) km s-1 Mpc-1. Extending the baseline model with a constant dark energy equation of state parameter w, DESI BAO alone require w=-0.99+0.15 -0.13. In models with a time-varying dark energy equation of state parametrised by w 0 and wa , combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually prefer w 0 > -1 and wa < 0. This preference is 2.6σ for the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σ or 3.9σ levels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑ mν free, combining the DESI and CMB data yields an upper limit ∑ mν < 0.072 (0.113) eV at 95% confidence for a ∑ mν > 0 (∑ mν > 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.
Abstract: We present a method to mitigate the effects of fiber assignment incompleteness in two-point power spectrum and correlation function measurements from galaxy spectroscopic surveys, by truncating small angular scales from estimators. We derive the corresponding modified correlation function and power spectrum windows to account for the small angular scale truncation in the theory prediction. We validate this approach on simulations reproducing the Dark Energy Spectroscopic Instrument (DESI) Data Release 1 (DR1) with and without fiber assignment. We show that we recover unbiased cosmological constraints using small angular scale truncated estimators from simulations with fiber assignment incompleteness, with respect to standard estimators from complete simulations. Additionally, we present an approach to remove the sensitivity of the fits to high k modes in the theoretical power spectrum, by applying a transformation to the data vector and window matrix. We find that our method efficiently mitigates the effect of fiber assignment incompleteness in two-point correlation function and power spectrum measurements, at low computational cost and with little statistical loss.
Background: Neutron-rich nuclei in the A≈100 mass region are interesting due to a rapid shape transition, especially pronounced in the Zr isotopes, and more recently observed in Nb isotopes. Nb98, with only one proton and one neutron outside the subshell closure nucleus of Zr96, is amenable to shell model calculations. Purpose: To further examine the rapid shape transition, the yrast structure of Nb98 was established in this work. This was the only yrast structure missing from all immediate neighbors to Zr96. Method: The yrast structure of Nb98 was studied in the fission of the compound systems formed in three heavy-ion induced reactions, Mg24 (134.5 MeV) +Yb173, Na23 (129 MeV) +Yb176, and O18 (91 MeV) +Pb208. Prompt γ-ray spectroscopy was accomplished using the Gammasphere array. Results: Excitation energies up to 3 MeV were observed for the first time in Nb98. The yrast structure above the previously known (5)+ isomer was established. In the process of studying Nb98 the yrast structure of positive-parity states in Mo99 was extended to 3.7 MeV excitation energy, the previously known Nb99 level scheme was enriched, and two new levels were added in the level scheme of Zr97. Conclusions: The coupling of the odd proton occupying the g9/2 orbital to the yrast states in the core nucleus of Zr97 can account for all observed states in Nb98. The yrast structure for the positive-parity states of Mo99 is compared to the deformed ground-state bands of the Ru101 isotone and of Mo98,100.
Synthetic data sets are used in cosmology to test analysis procedures, to verify that systematic errors are well understood and to demonstrate that measurements are unbiased. In this work we describe the methods used to generate synthetic datasets of Lyman-α quasar spectra aimed for studies with the Dark Energy Spectroscopic Instrument (DESI). In particular, we focus on demonstrating that our simulations reproduces important features of real samples, making them suitable to test the analysis methods to be used in DESI and to place limits on systematic effects on measurements of Baryon Acoustic Oscillations (BAO). We present a set of mocks that reproduce the statistical properties of the DESI early data set with good agreement. Additionally, we use a synthetic dataset to forecast the BAO scale constraining power of the completed DESI survey through the Lyman-α forest.
DESI aims to provide one of the tightest constraints on cosmological parameters by analysing the clustering of more than thirty million galaxies. However, obtaining such constraints requires special care in validating the methodology and efforts to reduce the computational time required through data compression and emulation techniques. In this work, we perform a rigorous validation of the PyBird power spectrum modelling code with both a traditional emulated Full-Modelling approach and the model-independent ShapeFit compression approach. By using cubic box simulations that accurately reproduce the clustering and precision of the DESI survey, we find that the cosmological constraints from ShapeFit and Full-Modelling are consistent with each other at the ∼ 0.5σ level for the ΛCDM model. Both ShapeFit and Full-Modelling are also consistent with the true ΛCDM simulation cosmology down to a scale of k max = 0.20 hMpc-1 even after including the hexadecapole. For extended models such as the wCDM and the oCDM models, we find that including the hexadecapole can significantly improve the constraints and reduce the modelling errors with the same k max. While their discrepancies between the constraints from ShapeFit and Full-Modelling are more significant than ΛCDM, they remain consistent within 0.7σ. Lastly, we also show that the constraints on cosmological parameters with the correlation function evaluated from PyBird down to s min = 30h -1Mpc are unbiased and consistent with the constraints from the power spectrum.
In anticipation of forthcoming data releases of current and future spectroscopic surveys, we present the validation tests and analysis of systematic effects within velocileptors modeling pipeline when fitting mock data from the AbacusSummit N-body simulations. We compare the constraints obtained from parameter compression methods to the direct fitting (Full-Modeling) approaches of modeling the galaxy power spectra, and show that the ShapeFit extension to the traditional template method is consistent with the Full-Modeling method within the standard ΛCDM parameter space. We show the dependence on scale cuts when fitting the different redshift bins using the ShapeFit and Full-Modeling methods. We test the ability to jointly fit data from multiple redshift bins as well as joint analysis of the pre-reconstruction power spectrum with the post-reconstruction BAO correlation function signal. We further demonstrate the behavior of the model when opening up the parameter space beyond ΛCDM and also when combining likelihoods with external datasets, namely the Planck CMB priors. Finally, we describe different parametrization options for the galaxy bias, counterterm, and stochastic parameters, and employ the halo model in order to physically motivate suitable priors that are necessary to ensure the stability of the perturbation theory.
Cookie SettingseScholarship uses cookies to ensure you have the best experience on our website. You can manage which cookies you want us to use.Our Privacy Statement includes more details on the cookies we use and how we protect your privacy.