Skip to main content
eScholarship
Open Access Publications from the University of California

PaleoBios

PaleoBios bannerUC Berkeley
Issue cover

Articles

Leidyosuchus (Crocodylia: Alligatoroidea) from the Upper Cretaceous Kaiparowits Formation (late Campanian) of Utah, USA

Several crocodyliform lineages inhabited the Western Interior Basin of North America during the late Campanian (Late Cretaceous), with alligatoroids in the Kaiparowits Formation of southern Utah exhibiting exceptional diversity within this setting. A partial skeleton of a previously unknown alligatoroid taxon from the Kaiparowits Formation may represent the fifth alligatoroid and sixth crocodyliform lineage from this unit. The fossil includes the lower jaw, numerous osteoderms, vertebrae, ribs, and a humerus. The lower jaw is generally long and slender, and the dentary features 22 alveoli with conical, non-globidont teeth. The splenial contributes to the posterior quarter of the mandibular symphysis, which extends posteriorly to the level of alveolus 8, and the dorsal process of the surangular is forked around the terminal alveolus. Dorsal midline osteoderms are square. This combination of character states identifies the Kaiparowits taxon as the sister taxon of the early alligatoroid Leidyosuchus canadensis from the Late Cretaceous of Alberta, the first verified report of the Leidyosuchus (sensu stricto) lineage from the southern Western Interior Basin. This phylogenetic placement is consistent with at least occasional faunal exchanges between northern and southern parts of the Western Interior Basin during the late Campanian, as noted for other reptile clades.

 

Variability of venation patterns in extant genus Salix: Implications for fossil taxonomy

The extant genus Salix Linnaeus (1753) represents one of the most diverse groups of woody plants. Leaf areas vary from a few mm2 in arctic or high alpine habitats to more than 100 cm2 in humid subtropical zones. Salix leaves are represented across the range of possible leaf shapes, from circular, obovate, and ovate, to lanceolate and linear with a length-to-width ratio of up to 30. Leaf venation may be eucamptodromous, eucamptodromous with occasional brochidodromous or semicraspedodromous arches, or brochidodromous. Because brochidodromous and semicraspedodromous arches may occur on the same leaf, the more inclusive term brochoid is introduced here. This study gives an overview of venation patterns within extant genus Salix and sorts leaves into five venation-defined morphotype groups. In some species of subgenera Protitea and Salix, individuals in hot, dry environments develop long brochoid chains over most of the blade length or intramarginal veins with only tertiary-gauged connections to the secondary vein framework. These unusual venation patterns correlate with high mean monthly temperature (MMT) and low mean monthly precipitation (MMP) of the hottest month. This study also discusses possible reasons as to why intramarginal veins seem to be absent or at least rare in fossil Salix specimens. These findings aid in both distinguishing between fossil Salix species and in separating fossil Salix remains from those of other genera.

Middle Eocene trees of the Clarno Petrified Forest, John Day Fossil Beds National Monument, Oregon

One of the iconic fossils of the John Day Fossil Beds National Monument, Oregon, USA, is the Hancock Tree—a permineralized standing tree stump about 0.5 m in diameter and 2.5 m in height, embedded in a lahar of the Clarno Formation of middle Eocene age. We examined the wood anatomy of this stump, together with other permineralized woods and leaf impressions from the same stratigraphic level, to gain an understanding of the vegetation intercepted by the lahar. Wood of the Hancock Tree is characterized by narrow and numerous vessels, exclusively scalariform perforation plates, exclusively uniseriate rays, and diffuse axial parenchyma. These features and the type of vessel-ray parenchyma indicate affinities with the Hamamelidaceae, with closest similarity to the Exbucklandoideae, which is today native to Southeast and East Asia. The Hancock Tree is but one of at least 48 trees entombed in the same mudflow; 14 others have anatomy similar to the Hancock Tree; 20 have anatomy similar to Platanoxylon haydenii (Platanaceae), two resemble Scottoxylon eocenicum (probably in order Urticales). The latter two wood types occur in the nearby Clarno Nut Beds. Two others are distinct types of dicots, one with features seen in the Juglandaceae, the other of unknown affinities, and the rest are very poorly preserved and of unknown affinity. Leaf impressions in and immediately below the layer containing the trees include the extinct genera Macginitiea and Platimeliphyllum (Platanaceae), and Trochodendroides (Saxifragales).