Skip to main content
Open Access Publications from the University of California

Role of initial magnetic disorder: A time-dependent ab initio study of ultrafast demagnetization mechanisms


Despite more than 20 years of development, the underlying physics of the laser-induced demagnetization process is still debated. We present a fast, real-time time-dependent density functional theory (rt-TDDFT) algorithm together with the phenomenological atomic Landau-Lifshitz-Gilbert model to investigate this problem. Our Hamiltonian considers noncollinear magnetic moment, spin-orbit coupling (SOC), electron-electron, electron-phonon, and electron-light interactions. The algorithm for time evolution achieves hundreds of times of speedup enabling calculation of large systems. Our simulations yield a demagnetization rate similar to experiments. We found that (i) the angular momentum flow from light to the system is not essential and the spin Zeeman effect is negligible. (ii) The phonon can play a role but is not essential. (iii) The initial spin disorder and the self-consistent update of the electron-electron interaction play dominant roles and enhance the demagnetization to the experimentally observed rate. The spin disorder connects the electronic structure theory with the phenomenological three-temperature model.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View