Measurement of the beta-neutrino correlation in laser trapped {sup 21}Na
Skip to main content
Open Access Publications from the University of California

Measurement of the beta-neutrino correlation in laser trapped {sup 21}Na

  • Author(s): Scielzo, Nicholas David
  • et al.

Trapped radioactive atoms are an appealing source for precise measurements of the beta-neutrino correlation coefficient, a, since the momentum of the neutrino can be inferred from the detection of the unperturbed low-energy recoil daughter nucleus. Sodium-21 is produced on-line at the 88" cyclotron at Lawrence Berkeley National Laboratory, and 8e5 atoms have been maintained in a magneto-optical trap. A static electric field draws daughter Neon-21 ions to a microchannel plate detector and betas are detected in coincidence with a plastic scintillator beta detector. The Neon-21 time-of-flight distribution determines the beta neutrino correlation coefficient, a. The resulting charge-state distribution is compared to a simple model based on the sudden approximation which suggests a small but important contribution from nuclear recoil-induced ionization. A larger than expected fraction of the daughters are detected in positive charge-states, but no dependence on either the beta or recoil nucleus energy was observed. We find a = 0.5243 plus or minus 0.0092, which is in 3.6 sigma disagreement with the Standard Model prediction of a = 0.559 plus or minus 0.003. Aside from a deviation from the Standard Model, a possible explanation for the discrepancy is that the branching ratio to the first excited state is in error.

Main Content
Current View