Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Design of Mechanisms to Draw Trigonometric Plane Curves

Published Web Location

https://doi.org/10.1115/1.4035882Creative Commons 'BY' version 4.0 license
Abstract

This paper describes a mechanism design methodology that draws plane curves which have finite Fourier series parameterizations, known as trigonometric curves. We present three ways to use the coefficients of this parameterization to construct a mechanical system that draws the curve. One uses Scotch yoke mechanisms for each of the terms in the coordinate trigonometric functions, which are then added using a belt or cable drive. The second approach uses two-coupled serial chains obtained from the coordinate trigonometric functions. The third approach combines the coordinate trigonometric functions to define a single-coupled serial chain that draws the plane curve. This work is a version of Kempe's universality theorem that demonstrates that every plane trigonometric curve has a linkage which draws the curve. Several examples illustrate the method including the use of boundary points and the discrete Fourier transform to define the trigonometric curve.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View