Skip to main content
eScholarship
Open Access Publications from the University of California

Liquid to crystal Si growth simulation using machine learning force field

Published Web Location

https://doi.org/10.1063/5.0011163
Abstract

Machine learning force field (ML-FF) has emerged as a potential promising approach to simulate various material phenomena for large systems with ab initio accuracy. However, most ML-FFs have been used to study the phenomena relatively close to the equilibrium ground states. In this work, we have studied a far from equilibrium system of liquid to crystal Si growth using ML-FF. We found that our ML-FF based on ab initio decomposed atomic energy can reproduce all the aspects of ab initio simulated growth, from local energy fluctuations to transition temperatures, to diffusion constant, and growth rates. We have also compared the growth simulation with the Stillinger-Weber classical force field and found significant differences. A procedure is also provided to correct a systematic fitting bias in the ML-FF training process, which exists in all training models, otherwise critical results like transition temperature will be wrong.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View