Skip to main content
Open Access Publications from the University of California

Cr L-Edge X-ray Absorption Spectroscopy of CrIII(acac)3 in Solution with Measured and Calculated Absolute Absorption Cross Sections.

  • Author(s): Kubin, Markus
  • Guo, Meiyuan
  • Ekimova, Maria
  • Källman, Erik
  • Kern, Jan
  • Yachandra, Vittal K
  • Yano, Junko
  • Nibbering, Erik TJ
  • Lundberg, Marcus
  • Wernet, Philippe
  • et al.

X-ray absorption spectroscopy at the L-edge of 3d transition metals is widely used for probing the valence electronic structure at the metal site via 2p-3d transitions. Assessing the information contained in L-edge absorption spectra requires systematic comparison of experiment and theory. We here investigate the Cr L-edge absorption spectrum of high-spin chromium acetylacetonate CrIII(acac)3 in solution. Using a transmission flatjet enables determining absolute absorption cross sections and spectra free from X-ray-induced sample damage. We address the challenges of measuring Cr L absorption edges spectrally close to the O K absorption edge of the solvent. We critically assess how experimental absorption cross sections can be used to extract information on the electronic structure of the studied system by comparing our results of this CrIII (3d3) complex to our previous work on L-edge absorption cross sections of MnIII(acac)3 (3d4) and MnII(acac)2 (3d5). Considering our experimental uncertainties, the most insightful experimental observable for this d3(CrIII)-d4(MnIII)-d5(MnII) series is the L-edge branching ratio, and we discuss it in comparison to semiempirical multiplet theory and ab initio restricted active space calculations. We further discuss and analyze trends in integrated absorption cross sections and correlate the spectral shapes with the local electronic structure at the metal sites.

Main Content
Current View