Skip to main content
eScholarship
Open Access Publications from the University of California

Precision measurement of the electron energy-loss function in tritium and deuterium gas for the KATRIN experiment

Abstract

The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium β -decay endpoint region with a sensitivity on mν of 0.2 eV / c 2 (90% CL). For this purpose, the β -electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 keV. A dominant systematic effect of the response of the experimental setup is the energy loss of β -electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T 2 gas mixture at 30 K, as used in the first KATRIN neutrino-mass analyses, as well as a D 2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mν2)<10-2eV2 [1] in the KATRIN neutrino-mass measurement to a subdominant level.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View