Phytoplankton in the Upper San Francisco Estuary: Recent Biomass Trends, Their Causes, and Their Trophic Significance
Skip to main content
eScholarship
Open Access Publications from the University of California

Phytoplankton in the Upper San Francisco Estuary: Recent Biomass Trends, Their Causes, and Their Trophic Significance

Creative Commons Attribution 4.0 International Public License
Abstract

https://doi.org/10.15447/sfews.2008v6iss1art2

Several pelagic fish populations in the upper San Francisco Estuary have recently declined to historically low abundances, prompting an interest in the status of their food supply. Previous studies have indicated that the primary food supply for metazoans in the Delta is phytoplankton productivity, and the long-term decrease in phytoplankton over the last few decades may very well play a role in the long-term decline of pelagic fish abundance. Regional phytoplankton biomass trends during 1996–2005, however, are positive in the Delta and neutral in Suisun Bay, the two major sub-regions of the upper estuary. The trend in Delta primary productivity is also positive. Changes in phytoplankton biomass and production during the last decade are therefore unlikely to be the cause of these more recent metazoan declines. The main source of interannual phytoplankton variability in the Delta during 1996–2005, including the upward trend, appears to have been freshwater flow variability and its effect on particle residence time. This conclusion is supported by trend analyses; the concurrence of these time trends at widely-separated stations; empirical models at the annual and monthly time scales; particle residence time estimates; and experience from other estuaries. A significant temperature increase was also noticed, at least partially independent of flow changes, but its net effect on the phytoplankton community is unknown because of differential effects on growth and loss processes. Phytoplankton biomass in Suisun Bay, in contrast to the Delta, did not increase during 1996–2005. Consistent with this observation, Suisun Bay phytoplankton exhibited relatively low responsiveness to flow variability. This behavior differs from earlier chlorophyll-flow relationships reported in the literature. The reason appears to be the invasion of Suisun Bay by a clam—Corbula amurensis—in 1986, which has since maintained the phytoplankton community mostly at low levels by vigorous filter-feeding. In the past, flows into Suisun Bay generally diluted the higher phytoplankton concentrations within the bay; now they bring in higher phytoplankton concentrations from upstream. The supply of phytoplankton carbon to Suisun Bay has always been dominated by allochthonous sources, at least for mean flow conditions. Now this dominance must be even more pronounced.

Main Content
Current View