Skip to main content
Open Access Publications from the University of California

Longitudinal unzipping of 2D transition metal dichalcogenides


Unzipping of the basal plane offers a valuable pathway to uniquely control the material chemistry of 2D structures. Nonetheless, reliable unzipping has been reported only for graphene and phosphorene thus far. The single elemental nature of those materials allows a straightforward understanding of the chemical reaction and property modulation involved with such geometric transformations. Here we report spontaneous linear ordered unzipping of bi-elemental 2D MX2 transition metal chalcogenides as a general route to synthesize 1D nanoribbon structures. The strained metallic phase (1T') of MX2 undergoes highly specific longitudinal unzipping owing to the self-linearized oxygenation at chalcogenides. Stable dispersions of 1T' MoS2 nanoribbons with widths of 10-120 nm and lengths up to ~4 µm are produced in water. Edge abundant 1T' MoS2 nanoribbons reveal the hidden potential of idealized electrocatalysis for hydrogen evolution reactions at a competitive level with the precious Pt catalyst.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View