Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Size-Dependent Lattice Symmetry Breaking Determines the Exciton Fine Structure of Perovskite Nanocrystals

Abstract

The order of bright and dark excitonic states in lead-halide perovskite nanocrystals is debated. It has been proposed that the Rashba effect, driven by lattice-induced symmetry breaking, causes a bright excitonic ground state. Direct measurements of excitonic spectra, however, show the signatures of a dark ground state, bringing the role of the Rashba effect into question. We use an atomistic theory to model the exciton fine structure of perovskite nanocrystals, accounting for realistic lattice distortions. We calculate optical gaps and excitonic features that compare favorably with experimental works. The exciton fine structure splittings show a nonmonotonic size dependence due to a structural transition between cubic and orthorhombic phases. Additionally, the excitonic ground state is found to be dark with spin triplet character, exhibiting a small Rashba coupling. We additionally explore the effects of nanocrystal shape on the fine structure, clarifying observations on polydisperse nanocrystals.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View