Skip to main content
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Tracheal suctioning improves gas exchange but not hemodynamics in asphyxiated lambs with meconium aspiration



Current neonatal resuscitation guidelines recommend tracheal suctioning of nonvigorous neonates born through meconium-stained amniotic fluid.


We evaluated the effect of tracheal suctioning at birth in 29 lambs with asphyxia induced by cord occlusion and meconium aspiration during gasping.


Tracheal suctioning at birth (n = 15) decreased amount of meconium in distal airways (53 ± 29 particles/mm(2) lung area) compared to no suction (499 ± 109 particles/mm(2); n = 14; P < 0.001). Three lambs in the suction group had cardiac arrest during suctioning, requiring chest compressions and epinephrine. Onset of ventilation was delayed in the suction group (146 ± 11 vs. 47 ± 3 s in no-suction group; P = 0.005). There was no difference in pulmonary blood flow, carotid blood flow, and pulmonary or systemic blood pressure between the two groups. Left atrial pressure was significantly higher in the suction group. Tracheal suctioning resulted in higher Pao2/FiO2 levels (122 ± 21 vs. 78 ± 10 mm Hg) and ventilator efficiency index (0.3 ± 0.05 vs.0.16 ± 0.03). Two lambs in the no-suction group required inhaled nitric oxide. Lung 3-nitrotyrosine levels were higher in the suction group (0.65 ± 0.03 ng/µg protein) compared with the no-suction group (0.47 ± 0.06).


Tracheal suctioning improves oxygenation and ventilation. Suctioning does not improve pulmonary/systemic hemodynamics or oxidative stress in an ovine model of acute meconium aspiration with asphyxia.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View