Skip to main content
Open Access Publications from the University of California

Location of Co and Ni promoter atoms in multi-layer MoS2 nanocrystals for hydrotreating catalysis

  • Author(s): Zhu, Y
  • Ramasse, QM
  • Brorson, M
  • Moses, PG
  • Hansen, LP
  • Topsøe, H
  • Kisielowski, CF
  • Helveg, S
  • et al.

© 2015 Elsevier B.V. All rights reserved. The location of Co and Ni promoter atoms in industrial-style hydrotreating catalysts is examined by combining aberration-corrected scanning transmission electron microscopy and electron energy loss spectrum imaging. The observations unambiguously demonstrate that both Co and Ni promoter atoms occupy sites at all low-indexed edge terminations of hexagonally shaped multi-layer MoS2 nanocrystals. In contrast, similar observations for single-layer MoS2 nanocrystals show that Co-promoter atoms preferentially attach at the (-1 0 0) S-edge termination and are absent at the (1 0 0) Mo-edge termination. The apparent discrepancy between single- and multi-layer MoS2 nanocrystals can be explained by the 2H-MoS2 crystal structure, for which successive MoS2 layers alternatingly expose Mo- and S-edge terminations in any of the low-indexed directions. Thus, the multi-layer Co-Mo-S and Ni-Mo-S nanocrystals, formed in the present type of industrial-style hydrotreating catalyst, are consistently described as a superposition of single-layer Co-Mo-S and Ni-Mo-S structures, and in turn, provide promoted edge sites with different steric accessibility for the organic compounds in mineral oil distillates.

Main Content
Current View