Skip to main content
Open Access Publications from the University of California

Assessment of the Second-Ionization Potential of Lawrencium: Investigating the End of the Actinide Series with a One-Atom-at-a-Time Gas-Phase Ion Chemistry Technique.


Experiments were performed at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron facility to investigate the electron-transfer reduction reaction of dipositive Lr (Z = 103) with O2 gas. Ions of 255Lr were produced in the fusion-evaporation reaction 209Bi(48Ca,2n) 255Lr and were studied with a novel gas-phase ion chemistry technique. The produced 255Lr2+ ions were trapped and O2 gas was introduced, such that the charge-exchange reaction to reduce 255Lr2+ to 255Lr1+ was observed and the reaction rate constant was determined to be k = 1.5(7) × 10-10 cm3/mol/s. The observation that this reaction proceeds establishes the lower limit on the second ionization potential of Lr to be 13.3(3) eV. This gives further support that the actinide series terminates with Lr. Additionally, this result can be used to better interpret the situation concerning the placement of Lu and Lr on the periodic table within the current framework of the actinide hypothesis. The success of this experimental approach now identifies unique opportunities for future gas-phase reaction studies on actinide and super heavy elements.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View