Skip to main content
Open Access Publications from the University of California


The organizing principle of the Integrative Oceanography Division resides in a shared commitment to collaborative, interdisciplinary science. "Integrative" denotes our philosophy that multiple approaches are important in creating a better understanding of the ocean system. From pelagic to benthic ecology, shoreline to open ocean dynamics, data to information systems, our research encompasses field work, laboratory experimentation and computer modeling to acquire, integrate, synthesize and understand diverse data sets to elucidate the underlying dynamics of complex, multidimensional ocean systems.

Integrative Oceanography Division

There are 556 publications in this collection, published between 1982 and 2023.
Open Access Policy Deposits (389)

Seasonal and interannual oxygen variability on the Washington and Oregon continental shelves

© 2014, American Geophysical Union. All rights reserved. The coastal waters of the northern portion of the California Current System experience a seasonal decline in oxygen concentrations and hypoxia over the summer upwelling season that results in negative impacts on habitat for many organisms. Using a regional model extending from 43°N to 50°N, with an oxygen component developed in this study, drivers of seasonal and regional oxygen variability are identified. The model includes two pools of detritus, which was an essential addition in order to achieve good agreement with the observations. The model was validated using an extensive array of hydrographic and moored observations. The model captures the observed seasonal decline as well as spatial trends in bottom oxygen. Spatially, three regions of high respiration are identified as locations where hypoxia develops each modeled year. Two of the regions are previously identified recirculation regions. The third region is off of the Washington coast. Sediment oxygen demand causes the region on the Washington coast to be susceptible to hypoxia and is correlated to the broad area of shallow shelf (<60 m) in the region. Respiration and circulation-driven divergence contribute similar (60, 40%, respectively) amounts to the integrated oxygen budget on the Washington coast while respiration dominates the Oregon coast. Divergence, or circulation, contributes to the oxygen dynamics on the shelf in two ways: first, through the generation of retention features, and second, by determining variability.

Using Stable Isotope Analysis to Understand the Migration and Trophic Ecology of Northeastern Pacific White Sharks (Carcharodon carcharias)

The white shark (Carcharodon carcharias) is a wide-ranging apex predator in the northeastern Pacific (NEP). Electronic tagging has demonstrated that white sharks exhibit a regular migratory pattern, occurring at coastal sites during the late summer, autumn and early winter and moving offshore to oceanic habitats during the remainder of the year, although the purpose of these migrations remains unclear. The purpose of this study was to use stable isotope analysis (SIA) to provide insight into the trophic ecology and migratory behaviors of white sharks in the NEP. Between 2006 and 2009, 53 white sharks were biopsied in central California to obtain dermal and muscle tissues, which were analyzed for stable isotope values of carbon (δ(13)C) and nitrogen (δ(15)N). We developed a mixing model that directly incorporates movement data and tissue incorporation (turnover) rates to better estimate the relative importance of different focal areas to white shark diet and elucidate their migratory behavior. Mixing model results for muscle showed a relatively equal dietary contribution from coastal and offshore regions, indicating that white sharks forage in both areas. However, model results indicated that sharks foraged at a higher relative rate in coastal habitats. There was a negative relationship between shark length and muscle δ(13)C and δ(15)N values, which may indicate ontogenetic changes in habitat use related to onset of maturity. The isotopic composition of dermal tissue was consistent with a more rapid incorporation rate than muscle and may represent more recent foraging. Low offshore consumption rates suggest that it is unlikely that foraging is the primary purpose of the offshore migrations. These results demonstrate how SIA can provide insight into the trophic ecology and migratory behavior of marine predators, especially when coupled with electronic tagging data.

Understanding Microbial Community Dynamics in Up-Flow Bioreactors to Improve Mitigation Strategies for Oil Souring

Oil souring occurs when H2S is generated in oil reservoirs. This not only leads to operational risks and health hazards but also increases the cost of refining crude oil. Sulfate-reducing microorganisms are considered to be the main source of the H2S that leads to oil souring. Substrate competition between nitrate-reducing and sulfate-reducing microorganisms makes biosouring mitigation via the addition of nitrate salts a viable strategy. This study explores the shift in microbial community across different phases of biosouring and mitigation. Anaerobic sand-filled columns wetted with seawater and/or oil were used to initiate the processes of sulfidogenesis, followed by mitigation with nitrate, rebound sulfidogenesis, and rebound control phases (via nitrate and low salinity treatment). Shifts in microbial community structure and function were observed across different phases of seawater and oil setups. Marine bacterial taxa (Marinobacter, Marinobacterium, Thalassolituus, Alteromonas, and Cycloclasticus) were found to be the initial responders to the application of nitrate during mitigation of sulfidogenesis in both seawater- and oil- wetted columns. Autotrophic groups (Sulfurimonas and Desulfatibacillum) were found to be higher in seawater-wetted columns compared to oil-wetted columns, suggesting the potential for autotrophic volatile fatty acid (VFA) production in oil-field aquifers when seawater is introduced. Results indicate that fermentative (such as Bacteroidetes) and oil-degrading bacteria (such as Desulfobacula toluolica) play an important role in generating electron donors in the system, which may sustain biosouring and nitrate reduction. Persistence of certain microorganisms (Desulfobacula) across different phases was observed, which may be due to a shift in metabolic lifestyle of the microorganisms across phases, or zonation based on nutrient availability in the columns. Overall results suggest mitigation strategies for biosouring can be improved by monitoring VFA concentrations and microbial community dynamics in the oil reservoirs during secondary recovery of oil.

386 more worksshow all