- Aker, M;
- Beglarian, A;
- Behrens, J;
- Berlev, A;
- Besserer, U;
- Bieringer, B;
- Block, F;
- Bornschein, B;
- Bornschein, L;
- Böttcher, M;
- Brunst, T;
- Caldwell, TS;
- Carney, RMD;
- Chilingaryan, S;
- Choi, W;
- Debowski, K;
- Deffert, M;
- Descher, M;
- Barrero, D Díaz;
- Doe, PJ;
- Dragoun, O;
- Drexlin, G;
- Edzards, F;
- Eitel, K;
- Ellinger, E;
- Miniawy, A El;
- Engel, R;
- Enomoto, S;
- Felden, A;
- Formaggio, JA;
- Fränkle, FM;
- Franklin, GB;
- Friedel, F;
- Fulst, A;
- Gauda, K;
- Gil, W;
- Glück, F;
- Groh, S;
- Grössle, R;
- Gumbsheimer, R;
- Hannen, V;
- Haußmann, N;
- Heizmann, F;
- Helbing, K;
- Hickford, S;
- Hiller, R;
- Hillesheimer, D;
- Hinz, D;
- Höhn, T;
- Houdy, T;
- Huber, A;
- Jansen, A;
- Karl, C;
- Kellerer, J;
- Kleesiek, M;
- Klein, M;
- Köhler, C;
- Köllenberger, L;
- Kopmann, A;
- Korzeczek, M;
- Kovalík, A;
- Krasch, B;
- Krause, H;
- Kunka, N;
- Lasserre, T;
- La Cascio, L;
- Lebeda, O;
- Lehnert, B;
- Le, TL;
- Lokhov, A;
- Machatschek, M;
- Malcherek, E;
- Mark, M;
- Marsteller, A;
- Martin, EL;
- Meier, M;
- Melzer, C;
- Menshikov, A;
- Mertens, S;
- Mostafa, J;
- Müller, K;
- Niemes, S;
- Oelpmann, P;
- Parno, DS;
- Poon, AWP;
- Poyato, JML;
- Priester, F;
- Ranitzsch, PC-O;
- Robertson, RGH;
- Rodejohann, W;
- Rodenbeck, C;
- Röllig, M;
- Röttele, C;
- Ryšavý, M;
- Sack, R;
- Saenz, A;
- Schäfer, P;
- Schaller (née Pollithy), A;
- Schimpf, L;
- Schlösser, K;
- Schlösser, M;
- Schlüter, L;
- Schneidewind, S;
- Schrank, M;
- Schulz, B;
- Schwachtgen, C;
- Šefčík, M;
- Seitz-Moskaliuk, H;
- Sibille, V;
- Siegmann, D;
- Slezák, M;
- Steidl, M;
- Sturm, M;
- Sun, M;
- Tcherniakhovski, D;
- Telle, HH;
- Thorne, LA;
- Thümmler, T;
- Titov, N;
- Tkachev, I;
- Trost, N;
- Urban, K;
- Valerius, K;
- Vénos, D;
- Hernández, AP Vizcaya;
- Weinheimer, C;
- Welte, S;
- Wendel, J;
- Wilkerson, JF;
- Wolf, J;
- Wüstling, S;
- Xu, W;
- Yen, Y-R;
- Zadoroghny, S;
- Zeller, G
The KATRIN experiment is designed for a direct and model-independent determination of the effective electron anti-neutrino mass via a high-precision measurement of the tritium β -decay endpoint region with a sensitivity on mν of 0.2 eV / c 2 (90% CL). For this purpose, the β -electrons from a high-luminosity windowless gaseous tritium source traversing an electrostatic retarding spectrometer are counted to obtain an integral spectrum around the endpoint energy of 18.6 keV. A dominant systematic effect of the response of the experimental setup is the energy loss of β -electrons from elastic and inelastic scattering off tritium molecules within the source. We determined the energy-loss function in-situ with a pulsed angular-selective and monoenergetic photoelectron source at various tritium-source densities. The data was recorded in integral and differential modes; the latter was achieved by using a novel time-of-flight technique. We developed a semi-empirical parametrization for the energy-loss function for the scattering of 18.6-keV electrons from hydrogen isotopologs. This model was fit to measurement data with a 95% T 2 gas mixture at 30 K, as used in the first KATRIN neutrino-mass analyses, as well as a D 2 gas mixture of 96% purity used in KATRIN commissioning runs. The achieved precision on the energy-loss function has abated the corresponding uncertainty of σ(mν2)<10-2eV2 [1] in the KATRIN neutrino-mass measurement to a subdominant level.