Skip to main content
eScholarship
Open Access Publications from the University of California

Failure Assessments for MQXF Magnet Support Structure With a Graded Approach

  • Author(s): Pan, Heng
  • Anderssen, Eric C
  • Cheng, Daniel W
  • Prestemon, Soren O
  • Ambrosio, Giorgio
  • et al.

Published Web Location

https://doi.org/10.1109/tasc.2019.2908113
No data is associated with this publication.
Abstract

© 2002-2011 IEEE. The high luminosity large hadron collider (LHC) upgrade requires new quadrupoles, MQXF, to replace the present LHC inner triplet magnets. The MQXFA magnet is the first prototype that has a 150-mm aperture and uses Nb3Sn superconducting technology in a 4.2-m magnetic length structure. The support structure design of the MQXFA magnet is based on the bladder-and-key technology, where a relatively low pre-stress at room temperature is increased to the final preload targets during the cool-down by the differential thermal contraction of the various components. The magnet support structure components experience different load levels from pre-load to cool-down and excitation. Consequently, a few parts experience high stresses that may cause localized plastic deformations or internal fracture development. The concept presented in this paper for the failure assessment of support structures integrates nonlinear finite-element (FE) analysis with detailed sub-models and fracture mechanics into an advanced engineering tool. The nonlinear FE solutions enable estimations of the structural response to the given loads, and the advanced fracture analysis with failure assessment diagram assesses the structure safety index of results obtained from the FE model. The paper describes how the MQXFA end-shell segments are being optimized based on the failure analyses.

Main Content

This item is under embargo until March 13, 2020.